Identifying Events from Co-Occurrences and Context across Large Document Collections

Andreas Spitz
Database Systems Research Group, Heidelberg University, Im Neuenheimer Feld 348, 69120 Heidelberg, Germany

What describes an event?

Textual representations and mentions of events have a spatial and temporal component and involve a set of actors.

First Approach: Temporal Profiles

With the English Wikipedia as corpus:
- Extract terms (content words)
- Extract dates at granularity levels day, month and year

Concept: Use term-time co-occurrences to construct temporal term profiles and contextual date profiles to extract information from the text [1].

Term-Time Co-occurrences

Create bipartite sentence-graphs:

- The Demolition of the Berlin Wall officially began on [23 June 1989].

Combine into one graph representation $G = (T \cup D, E, \omega)$ with $\omega : E \rightarrow \mathbb{N}$:
- $|T| = 3,748,730$ terms
- $|D| = 210,375$ dates
- $|E| = 110,639,525$ edges

Evaluation

Ranking for U.S. Election Days
- Annually, varies between Nov 2 - Nov 8
- Presidential election every 4 years
- Idea: similar dates to Election Days are also Election Days (in different years)

Outlook: The LOAD Model

Extension to a Multi-Party Graph
- Include spatial information
- Include persons
- Include organizations
- Include relationships between terms

Identifying Events:
- Based on incomplete information
- Without need for disambiguation

Significance- & Similarity-Measures

Information Retrieval

Leverage the graph representation to identify significant co-occurrences of dates and terms in the corpus and structural equivalence. Therefore, introduce ranking functions between sets of nodes:

$$r_{XY} : X \rightarrow \mathbb{R}^{|Y|}$$

where $X, Y \in \{D, T\}$.

Homogeneous ranking ($X = Y$):
- Similarity within the same node set
- No direct links available
- Average similarity between links sets
- Use for example a cosine similarity of adjacency vectors:

$$cos(t_w, t_b) := \frac{\sum t_w \cdot t_b}{\sqrt{\sum t_w^2 \cdot \sum t_b^2}}$$

Examples of rankings:

<table>
<thead>
<tr>
<th>Query: "2319-09-15"</th>
<th>Query: "1945"</th>
</tr>
</thead>
<tbody>
<tr>
<td>june, 15</td>
<td>june 15</td>
</tr>
<tr>
<td>june, 1945</td>
<td>june 1945</td>
</tr>
<tr>
<td>june 15, 1945</td>
<td>june 15, 1945</td>
</tr>
</tbody>
</table>

Outlook: Weight decay by distance

Beyond a bag of words:
- Consider co-occurrences in the entire document, not just in sentences
- Use a weight function for edges that decays with distance
- Aggregate individual co-occurrences
- When applied to the construction of a social network from person mentions on Wikipedia: results in relationships with natural age profiles [2].

References

This work was presented at the 3rd Heidelberg Laureate Forum, 23.08 – 28.08, 2015, Heidelberg, Germany.

Contact Information:
Andreas Spitz
spitz@informatik.uni-heidelberg.de
http://dbs.ifi.uni-heidelberg.de/