
Mining Data Streams under Dynamicly Changing Resource Constraints

Conny Franke Marcel Karnstedt Kai-Uwe Sattler
Department of Computer Science,

University of California at Davis, USA
Department of Computer Science and Automation,

TU Ilmenau, Germany

Abstract
Due to the inherent characteristics of data
streams, appropriate mining techniques heavily
rely on window-based processing and/or (ap-
proximating) data summaries. Because resources
such as memory and CPU time for maintaining
such summaries are usually limited, the qual-
ity of the mining results is affected in differ-
ent ways. Based on Frequent Itemset Mining
and an according Change Detection as selected
mining techniques, we discuss in this paper ex-
tensions of stream mining algorithms allowing
to determine the output quality for changes in
the available resources (mainly memory space).
Furthermore, we give directions how to estimate
resource consumptions based on user-specified
quality requirements.

1 Introduction
Stream mining has recently attracted attention by the
database as well as the data mining community. The goal
of stream mining is a fast and adaptive analysis of data
streams, i.e., the discovery of patterns and rules in the data.
An important task of traditional mining as well as stream
mining is frequent itemset mining, that aims to identify
combinations of items which occur frequent in a given se-
quence of transactions. Typical applications of mining data
streams are click stream analysis, analysis of records in net-
working and telephone services and analysis of sensor data
among others.

Another popular problem, especially for continuous data
streams, is the detection of changes in the data. This in-
cludes aspects such as changes in the distribution of the
data (possibly expressed in statistical terms like median or
quantiles) and burst detection, and also task specific change
detection, e.g., recognizing changes in the set of frequent
itemsets, in the frequency of particular itemsets or changing
correlations between itemsets. Concerning the problem of
change detection, the challenge of in-time processing and
signalizing gains additional importance beside resource re-
strictions.

The main challenge in applying mining techniques to
data streams is that a stream is theoretically infinite and
therefore in most cases cannot be materialized. That means
that the data have to be processed in a single pass using lit-
tle memory. Based on this restriction and the goals of data
mining one can identify two divergent objectives: On the
one hand the analysis should produce comprehensive and
exact results and detect changes in the data as soon as pos-
sible. On the other hand the single pass demand and the

problem of resource limitations allow only to perform the
analysis on an approximation of the stream (e.g., samples
or sketches) or a window (i.e., a finite subset of the stream).

However, using an approximation or a subset of the
stream affects the quality of the analysis result: The mining
model differs from the mining model we would get if the
“whole” stream or a larger subset is considered. This is par-
ticularly important because some of the proposed stream
mining approaches support time sensitiveness (reducing the
influence of outdated stream elements) by using weaker
approximations for outdated elements. Thus, the mining
quality for these elements is worse than for newer data.
The problem of the quality of the mining model can also
be considered in the opposite direction: Based on user-
specified quality requirements one could derive resource
requirements, i.e., the memory needed for managing stream
approximations in order to guarantee the requested quality.

Mining Operators

DSMS Resources

Quality
constraints

Resource
changes

Changes
of quality

Resource
allocation

Figure 1: Mapping of quality

We
propose
resource
awareness
in conjunc-
tion with
quality
awareness
as one of
the main
requirements in stream mining – and challenges in parallel.
Fig. 1 illustrates how the dependencies between both are
integrated into the operational flow of stream processing.
Two ways of putting resource and quality awareness into
practice get evident:

1. Claim for specific quality requirements and deduce
the needed resources to achieve this quality.

2. Limit the resources provided for processing and de-
duce the achievable quality.

Based on this observation, we propose a resource-
adaptive and quality-aware mining approach for frequent
itemset mining. We argue that quality awareness is basi-
cally orthogonal to the specific mining problem, even if
the individual mining approach requires dedicated tech-
niques for considering mining quality. For this purpose,
we discuss the general applicability of our approach and
outline specific characteristics that potential mining tech-
niques have to meet.

The remainder of this paper is structured as follows. Af-
ter a brief survey of related work in Section 2 we introduce
relevant quality measures in Section 3. In Section 4 we
present our extended frequent itemset mining approach by
adding quality measuring as well as a resource adaption
based on user-specified quality requirements. Based on

this, we discuss approaches for resource-adaptive change
detection in Section 4.3. After discussing the applicabil-
ity of our approach to general mining problems in Sec-
tion 4.4, we report results of an experimental evaluation
in Section 5. Finally, we conclude the paper and discuss
open issues for future work in Section 6.

2 Related Work
In this paper, we discuss strategies for adaptively mining
data streams in general. We will develop our considera-
tions on the basis of a corresponding approach for Frequent
Itemset Mining proposed in [Franke et al., 2005].

Frequent itemset mining deals with the problem of iden-
tifying sets of items occurring together in so-called trans-
actions frequently. Any itemset occurring in more than
σ (the support) percentage of all input transactions is re-
garded as frequent. Usually, a deviation of ε in the support
of an itemset is accepted. σ and ε are (optionally dynam-
icly) user-defined parameters. Basically, two classes of al-
gorithms can be distinguished: approaches with candidate
generation (e.g., the famous apriori algorithm) as well as
without candidate generation. Here, only the latter ones
are suitable for stream mining. Usually, these approaches
are based on a prefix-tree-like structure. In this tree – the
frequent pattern (FP) tree – each path represents an item-
set in which multiple transactions are merged into one path
or at least share a common prefix if they share an identical
frequent itemset [Han et al., 2000]. For this purpose, items
are sorted as part of their transaction in their frequency de-
scending order and are inserted into the tree accordingly.
Again, the FP tree is used as a compact data summary struc-
ture for the actual (offline) frequent pattern mining (the FP-
growth algorithm).

In order to mine streaming data in a time-sensitive way
an extension of this approach was proposed [Giannella et
al., 2003a]. Here, so-called tilted time window tables are
added to the nodes representing window-based counts of
the itemsets. The tilted windows allow to maintain sum-
maries of frequency information of recent transactions in
the data at a finer granularity than older transactions. The
extended FP tree, called pattern tree, is updated in a batch-
like manner: incoming transactions are accumulated until
enough transactions of the stream have arrived. Then, the
transactions of the batch are inserted into the tree. For min-
ing the tree a modification of the FP-growth algorithm is
used taking the tilted window table into account. The orig-
inal approach assumes that there is enough memory avail-
able to deliver results in any required quality (expressed in
terms of σ and ε, see Section 3) and no way is described
how to proceed if the algorithm runs out of memory. In
Section 4.2 we will discuss how the amount of required
memory can be adjusted and how this affects the result
quality.

In recent time, the idea of processing streams while
adapting to resource and quality constraints gained boosted
attention. There are several recent works dealing with
quality-aware online query processing applications in cen-
tralized and distributed systems, e.g., [Berti-Équille, 2006].
But, only a couple discusses concrete approaches and algo-
rithms in stream mining scenarios, least of all the conjunc-
tion of resource adaptiveness and quality awareness.

In [Gaber et al., 2003] the authors propose a resource-
adaptive mining approach based on similar goals as our
work. They suggest the adaptation to memory require-
ments, time constraints and data stream rate by solely

Q Output Factors
QMa ε/σ queried time interval
QMi σ -
QT r maximal “look back time” -
QT g minimal granularity queried “look back time”
QT c minimal time till detection of changes update interval u

Table 1: Quality measures and influencing factors

adapting the produced output granularity. The paper fo-
cuses on clustering, but the authors state the applicability
to classification and frequent item mining (but not itemset
mining). In succeeding works, e.g., [Gaber and Yu, 2006],
they extend their approach by adding resource adaptiveness
to the input rate and the actual data mining algorithm as
well. However, the approach lacks providing quality guar-
antees for the mining results.

The algorithm RAM-DS (Resource-Aware Mining for
Data Streams) proposed in [Teng et al., 2004] uses a
wavelet-based approach to control the resource require-
ments. It is mainly concerned with mining temporal pat-
terns and the method can only be used in combination with
a certain regression-based stream mining algorithm pro-
posed by the same authors. Although the proposed algo-
rithm for mining temporal patterns is resource-aware, it is
not resource-adaptive and does not provide guarantees for
the quality of the mining results.

3 Quality Measures for Stream Mining
As stated in section 1, any resource adaptiveness comes
along with effects on the achievable result quality. In
[Franke et al., 2005] we introduced different quality mea-
sures we examine in the context of stream mining. As a
result, we distinguish several different classes of quality
measures, which are summarized together with exemplar-
ily chosen representatives in Table 1. For a more detailed
discussion we refer to [Franke et al., 2005].

All QT∗ are identical for different mining problems and
symbolize concrete measures, while QM∗ represent classes
of quality measures that are always specific to the inves-
tigated problem and the applied algorithm(s). A special
measure for the problem of frequent itemset mining is the
ratio between a value ε and the support σ, which reflects
the maximal deviation from the defined support each of the
itemsets finally identified as frequent could possess. In the
context of frequent itemsets the support is a so called inter-
esting measures QMi ([Tan and Kumar, 2000]).

From our point of view, any mining techniques applied
on continuous and evolving data streams should take time
sensitiveness into account, thus, we define time as another
important quality measure. QTr describes how far we can
look back into the history of the processed stream and QTg

how exact we can do this, which means which time granu-
larity we can provide. QTc corresponds to one of the main
challenges of stream mining: the actual time we need in or-
der to register changes in the stream. These temporal qual-
ity measures must not be confused with temporal aspects
that influence the methodical quality (see Table 1).

For the remainder of this paper, if we refer to all quality
measures as a whole, we will use the symbol of the super-
class Q and the general term ‘quality’.

This work aims for determining two (theoretical) kinds
of functions:

1. r : Q → R - maps claimed quality to the resources
needed, and

2. r : R → Q - maps provided resources to the best
achievable quality, as an inverse function to r.

More detailed, r is one function
r(argsx, Qx(argsx), argsy, Qy(argsy), . . .) taking
all claimed quality measures Qx, Qy, . . . and their fac-
tors as input, but we write r(Q) for short. In contrast,
r represents a bundle of inverse functions rx, ry, . . .,
each corresponding to one quality measure Qx, Qy,
Moreover, as we do not state the distribution of the stream
elements as input factor for any function, r and r differ
with different stream characteristics.

4 Resource-aware Mining Operators
4.1 Operators for Data Streams
The techniques proposed in this work are implemented on
top of a Data Stream Management System (DSMS) called
PIPES [Krämer and Seeger, 2004]. Rather than a mono-
lithic DSMS, PIPES is an infrastructure that, in conjunc-
tion with the comprehending Java library XXL [d. Bercken
et al., 2001], allows for building a DSMS specific to con-
crete applications with full functionality. Usually, DSMS
manage multiple continuous queries specified by operator
graphs, which allows for reusing shared subqueries. PIPES
adapts this concept and introduces three types of graph
nodes: sources, sinks and operators, where operators com-
bine the functionality of a source and a sink with query
processing functionalities. The resulting query graphs can
be build and manipulated dynamically using an inherent
publish and subscribe mechanism. This offers, among oth-
ers, the possibility to adaptively optimize the processing
according to resource awareness. PIPES provides the op-
erational run-time environment to process and optimize
queries as well as a programming interface to implement
new operators, sources and sinks.

The aimed resource awareness mainly arises from im-
plementing the mining techniques as separate PIPES oper-
ators. But why do we implement them as operators, rather
than, for instance, building specialized DSMS for cluster-
ing and frequent itemset mining? The answer is, we want
to be able to freely choose among any combination of these
mining techniques between themselves, with other mining
algorithms and, generally, with all operators implemented
in PIPES. Fig. 2 pictures a small example to illustrate this
approach (each operator is pictured by its corresponding al-
gebra symbol). The stream data produced by two sources
O1 and O2 is processed in three ways: sink S1 receives
all clusters determined (ζ) for O1 after a preprocessing fil-
ter step. S2 and S3 receive association rules determined
(Φ) on joined data from O1 and O2 – this implies find-
ing the frequent itemsets (φ). S3 works on the determined
rules directly, while S2 receives them after applying an-
other clustering step (ζ) in order to identify interesting rules
by grouping the related ones (similar to the approach in
[Toivonen et al., 1995]).

The frequent itemset mining operator takes three dynam-
ically adjustable parameters:

1. The size b of a batch.
2. The queried time interval [ts, te].
3. An output interval o.

b represents the finest granularity of observed time and is
equal to the internal update interval u. Thus, o should be
a multiple of b. The resulting output is a data stream con-
sisting of one stream element per passed output interval,
containing the frequent itemsets found in [ts, te]. In cor-
respondence to the aimed resource awareness a user can
decide between two possibilities to initialize the operator
by providing:

1. Claimed qualities.
2. A memory limit.

In the first case, the amount of memory is calculated
by adapting parameters inside the operator to achieve the
claimed quality. For the second case, the adapting tech-
nique tries to find the ideal parameter settings to achieve
optimal quality results, if possible, while adhering to the
given memory limit. In order to achieve this, the user must
define which of the supported qualities is prioritized and/or
weight them accordingly.

4.2 Frequent Itemset Mining
We record two main requirements of frequent itemset min-
ing techniques in order to lend themselves for our needs:
they are able to provide error guarantees (frequent item-
set mining on data streams usually produces approximate
results, e.g., there may be some false positives in the re-
sulting output), and the approach has to be time-sensitive.
The FP-Stream approach in [Giannella et al., 2003a] is ca-
pable to satisfy these requirements. Asked for the frequent
itemsets of a time period [ts, te], FP-Stream guarantees that
it delivers all frequent itemsets in [ts′ , te′] with frequency
≥ σ · W , where W is the number of transactions the time
period [ts′ , te′] contains. ts′ and te′ are the time stamps of
the used tilted time window table (TTWT) that correspond
to ts and te, depending on QTg . The result may also con-
tain some itemsets whose frequency is between (σ − ε)·W
and σ ·W .

Our first goal was to find out how much memory the al-
gorithm needs in order to deliver results in a certain qual-
ity. We conducted an extensive series of tests for the al-
gorithm’s memory requirements in different parameter set-
tings. Secondly, we extended the approach from [Giannella
et al., 2003a] so we can cope with limited memory, result-
ing in the algorithm’s resource and quality awareness.

Estimating the amount of memory
Firstly, we estimate the amount of memory a pattern tree
needs within a given parameter setting. For estimating the
overall memory requirements of a pattern tree, we need to
know the number of nodes in a pattern tree, and the amount
of memory each individual node needs. In [Giannella et al.,
2003a] an upper bound is given for the size of a TTWT by
2 dlog2 (N)e + 2, where N is the number of batches seen
so far. This is because the algorithm uses a logarithmic
TTWT to the basis 2 and is designed with one buffer value
between each two values except the two most recent. In our
experiments the actual number of entries averaged over all
TTWTs in a tree was always less than 70% of this upper
bound. Besides the size of the TTWT, each node in a pat-
tern tree needs some fixed sized memory c for storing the
itemset it represents and information about its parent node
and child nodes.

The number of nodes in a pattern tree depends on sev-
eral facts. On the one hand there are the values of the al-
gorithm’s input parameters ε and b. The value of σ does
not affect the number of nodes in a pattern tree, because
the adding and dropping conditions in a pattern tree depend
only on ε, though σ is a quality measure! On the other hand
there are the characteristics of the underlying data stream
like the average number of items per transaction and the
number of distinct items in the stream. We have not yet
found a concrete formula describing the maximum number
of nodes in a pattern tree for specific parameter settings.
But, we conducted a series of tests showing that the max-
imum number of nodes remains constant over time while

Sink S3

ζ

ζ

π

σ

./ φ Φ

Source O1

Source O2

Sink S1

Sink S2

query plan

φ: frequent itemsets
Φ: association rules

σ: selection
π: projection

ζ: clustering
./: join

Operators

Figure 2: Example query plan

the algorithm processes an infinite series of transactions.
Thus, for certain values of ε and b and specific characteris-
tics of the underlying data stream we know the maximum
number of nodes in a pattern tree. In general, we can state
that a large pattern tree leads to mining results with better
quality than a small pattern tree.

The fact that the overall space requirements stabilize or
grow very slowly as the stream progresses was already
shown in [Giannella et al., 2003a]. The authors inves-
tigated different values for σ and the average number of
items per transaction. [Giannella et al., 2003b] addition-
ally showed the same effect for varying values of ε. We
extended these tests to different values of the number of
distinct items in the stream and the size of b. With a con-
stant input rate the size of b affects the number of transac-
tions a batch contains. As we will show in Sect. 5 the value
of b is the only one that has very little impact, as long as the
number of transactions in a time interval of size b exceeds
a certain threshold (depending on ε and some data stream
characteristics). This is in order to fade out the effect of
temporarily frequent itemsets that have no significance for
the overall mining result.

According to Sect. 3 we can determine r as: number-
of-nodes(ε, b) ∗ [2 ∗ dlog2 (N)e+ 2 + c], representing a
heuristic approximation of the resources actually needed.

Dynamic tree size adjustment
In the following we introduce an extended approach of [Gi-
annella et al., 2003a] that can cope with limited memory
and uses the available memory as effective as possible. If
there is not enough memory available for finding frequent
itemsets in the claimed quality, we need to dynamically
adjust the size of the pattern tree according to the actual
memory conditions. At first we implemented the approach
in [Giannella et al., 2003a] and examined its memory re-
quirements for different parameter settings. After that, we
considered a couple of possibilities to control the memory
requirements of the pattern tree. Thus, we gained an ex-
tended approach that has several alternatives for control-
ling the tree size depending on the user’s quality weighting.
We introduce a memory filling factor f defined as follows:

f = actual memory usage
provided memory . Depending on f , our approach

takes action to reduce or increase the size of the pattern
tree. The possibilities for manipulating the size of the tree
are:

1. Adjust the value of ε while keeping σ constant, i.e.,
change the approximation quality QMa of our mining
results according to available memory.

2. Adjust the value of σ according to available mem-
ory while keeping ε/σ constant, i.e., keep the qual-
ity QMa of the mining result constant but change the
quality of interestingness QMi.

3. Limit the size of each TTWT according to available
memory, i.e., change the time range quality QTr.

4. Adjust the value of b according to available memory,
i.e., change the time granularity quality QTg .

Since we can estimate the memory requirements of a pat-
tern tree for a given set of parameters, we can also estimate
the maximum number of nodes our pattern tree may not
exceed in order to adhere to a certain memory limit. In
each step we assume the size of a TTWT to be at its up-
per bound. The changes in this upper bound are estimated
only at constant intervals (in our tests every 100 batches),
because we want to avoid registering negligible changes of
the maximum number of nodes after every batch.

Option 1: Adapting ε. A first option for manipulating
the size of the pattern tree is to change the value of ε, i.e.,
change QMa. Therefore, we estimate an ideal ε that re-
sults in a pattern tree with approximate as many nodes as
possible, rather than taking the value of ε as an input pa-
rameter. However, the user may specify a lower bound for
the value of ε, i.e., an upper bound for the quality of the
mining result.

Since we are not yet able to calculate the maximum num-
ber of nodes for a given amount of memory exactly, we also
cannot estimate an ideal value of ε. Our algorithm adjusts
the value of ε depending on the filling factor f after every
processed batch as follows:
• f < 0.85: Decrease ε by ten percent. Use this ε when

processing the following batches.
• 0.85 ≤ f ≤ 1.0: The value of ε remains fixed.
• f > 1.0: Increase ε by ten percent. Conduct tail prun-

ing at the TTWTs of each node in the pattern tree and
drop all nodes with empty TTWTs. Repeat these steps
as long as f > 1.0.

Note that f can become greater than 1. This is because we
assume that we have more memory available in the system
than the amount we provide to the pattern tree. f > 1
indicates that the pattern tree consumes more memory than
we granted to it and the tree will thus reduce its size.

In this approach we have to store the value of ε we used
in each specific time interval, in addition to monitoring the
number of transactions in each interval. If two TTWT fre-
quency entries ni and nj are merged, we also have to merge
the according ε values εi and εj in order to determine the
achievable quality for this time period. We can average the
two distinct values of ε as described by equation 1. wi and
wj denote the sizes of time intervals ti and tj .

ε̂ = (εiwi + εjwj) / (wi + wj) (1)

It was shown in [Giannella et al., 2003a] that for a fixed ε,
if all itemsets whose approximate frequency is larger than
(σ − ε) · W are requested, then the result will contain all
frequent itemsets in the period [ts′ , te′]. Thus, in our ex-
tended approach all itemsets with approximate frequency
(σ − ε̂) · W are returned. The value of ε̂ depends on the
time intervals contained in [ts′ , te′]. If [ts′ , te′] covers only
time intervals where the same value of ε was used for all

batches, then ε̂ is equal to this ε. If [ts′ , te′] contains time
intervals where the value of ε differs, the value of ε̂ be-
comes:

ε̂ =

 e′∑
i=s′

εiwi

 /W (2)

In summary, in our first option we control the amount of
memory used by varying the value of ε and so ε/σ, which
reflects the approximational quality QMa of our mining re-
sult.

Option 2: Adapting σ. The second option for adjusting
the size of the pattern tree is to alter the value of σ. As σ
does not influence the size of the tree directly, ε/σ remains
the same. That is why the user does not provide a fixed
value of σ, but rather claims for a certain ε/σ that should
be guaranteed. Again, the user may also specify a lower
bound for the value of σ. The handling of σ is analog to
the handling of ε in the first option with the only differ-
ence, that ε must be adjusted in parallel in order to keep
ε/σ constant. The analogy also applies for determining the
value of σ̂:

σ̂ =

 e′∑
i=s′

σiwi

 /W (3)

The value of ε̂ again results from equation 2. Returned
are all itemsets whose approximate frequency is larger than
(σ̂ − ε̂) · W . We guarantee to deliver all itemsets whose
actual frequency is ≥ σ̂. Because ε̂/σ̂ is kept constant as
requested by the user, the quality QMa meets the user’s re-
quirements. By adjusting the value of σ we alter the quality
QMi by varying the frequency an itemset must occur in or-
der to belong to the delivered set of results.

But, what is the difference between the first and the sec-
ond option? In the first option we keep σ constant and
change ε. Thus, we can request all itemsets with a mini-
mum support of (σ − ε̂) · W and accept a poorer quality
QMa. In the second option, we modify σ but keep ε/σ
constant. Thus, we also keep the user defined quality QMa

constant and return all itemsets with a minimum support of
(σ̂ − ε̂) ·W . In this case, only the more interesting itemsets
are found, in terms of σ as an interestingness measure from
QMi. An effect on memory usage is achieved in both op-
tions. Moreover, in both options the methodology of prun-
ing TTWTs remains unchanged.

Option 3: Limiting the size of the TTWTs. The third
option is to limit the size of each TTWT to a fixed value.
This results in a restriction of how far we can look back
into the history of the processed stream, because we limit
the number of time intervals for which we store frequency
information. Thus, we are not able to deliver results from
a time period that includes batches lying farther back in
history than the information we recorded. According to
Sect. 3 this leads to an impairment of the time range quality
QTr.

As the number of time intervals stored in one entry of a
TTWT increases logarithmically, saving a large amount of
memory demands for limiting the size of a TTWT drasti-
cally. In this way, the information of a considerable portion
of the observed batches would get lost. Lowering the max-
imal size by small values, only a small amount of memory
can be saved.

Option 4: Adapting b. The last option in order to limit
the used memory is to adjust the value of b. Assuming

a constant input rate, the size of b affects the number of
transactions a batch contains. Increasing b leads to an im-
pairment of the time granularity quality QTg , as we reduce
how exact we can look back. Our experiments reveal that
the number of transactions per batch does not affect the
number of nodes in the pattern tree significantly. By in-
creasing the value of b we can only reduce the total number
of entries in a TTWT while processing a finite part of the
stream. Considering infinite data streams, since the size of
a TTWT grows logarithmically, the number of entries in a
TTWT will converge to the same value for all choices of
b. Therefore, this option will only have a significant impact
on the required memory if it is combined with a limitation
of the TTWT size. Combining both, we can reduce the
granularity of a time interval and look back farther in the
history of the data stream using the same number of TTWT
entries.

4.3 Change Detection

In Sect. 1, we briefly discussed the importance of quickly
detecting changes in data streams. In the following we will
exemplarily discuss change detection on the basis of the in-
troduced frequent itemset mining algorithm. We will out-
line how change detection may be implemented efficiently
and, more important, resource-aware. In the next section
we will investigate how our approach can be mapped to
general stream mining tasks, including change detection
as a post-processing step on the basis of concrete mining
tasks as well as an independent mining problem. On the ba-
sis of the extended FP-Stream approach there arise several
possibilities in order to implement an efficient detection of
changes in the frequent itemsets themselves, their temporal
occurrences and/or other relevant aspects. With several of
these alternatives we even get a resource-adaptive approach
for detecting changes for free. We will sketch five different
approaches and briefly discuss pros and cons.

From our point of view any technique for change detec-
tion should meet the following criteria:
• it is based on data structures which can be limited in

size, preferably in a dynamic manner
• it produces realtime results, which requires an online

and incremental processing
• it is capable of detecting any kind of changes that

may be of interest (i.e., frequency changes, correla-
tion changes, temporal changes, and so on) and is not
restricted to the detection of specific kinds

• changes can be represented to the user in an intuitive
and understandable manner

With the problem of frequent itemset mining, a lot of so-
phisticated changes in the stream (e.g., if subsets of a for-
merly frequent itemset are still frequent) can be detected by
analyzing basic changes (i.e., the occurrence/omission of
single members of the set of all frequent itemsets). There-
fore, for now we primarily focus on detecting these basic
changes.

Approaches on Separate Data Structures
A naive but simple solution is to take the output of the
frequent itemset mining operator as an independent input
stream for a separate change detection operator. Like this,
information about the itemsets found in the past must be
stored in some separate data structure. We investigated
three different approaches for that:

1. store all frequent itemsets produced so far together
with additional information (e.g., temporal) in a table

2. store snapshots of the pattern tree in regular intervals
3. store only differences between the set of all frequent

itemsets in regular intervals (similar to the incremental
backup technique for database systems)

A main problem of all three approaches is the need for a
separate data structure. This data structure allocates extra
resources, and thus, resource limits must be shared between
the actual mining operator and the change detection opera-
tor. However, the resource-adaptive techniques introduced
in this work could be applied to this data structure in order
to meet given resource limits. The first two methods allow
for detecting a wide variety of changes, even temporal ones,
but are consuming by far too much memory. With the first
variant, the task of detecting changes in one specific itemset
is complicated, because there is no information about the
location of itemsets in the pattern tree if they are registered
after being output from the frequent itemset operator. The
last of the three methods is suitable for quickly detecting
new or omitted itemsets between two successive time steps
– but complicates the handling of arbitrary time intervals
and the detection of changes in the frequency of itemsets
that have already been frequent before.

Approaches on the Pattern Tree
In order to implement a resource-efficient change detec-
tion, a more intuitive approach is to try to detect changes
directly from the pattern tree used in the frequent item-
set mining operator. This would need no extra memory,
which is one of the main resources in our considerations.
Moreover, because change detection and itemset mining is
combined into one operator, realtime signalizing is easy to
achieve. Again, we distinguish two specific approaches:

1. detect changes as soon as the pattern tree is modified
2. detect changes after executing the FP-growth algo-

rithm on the pattern tree (when looking for the actual
frequent itemsets after each batch)

The second approach is capable of detecting more changes,
because with the first one we can only watch itemsets that
are modified in the current batch run. If a change in an
itemset is only recognized during the run of FP-growth, the
first method will not detect this change. The disadvantage
of the second method is that it can only be run after pro-
cessing a whole batch and has to completely traverse the
tree – which leads to worse reaction time and less infor-
mation about new or deleted nodes. However, in the first
method we have to deal with change candidates, because
not each modification will lead to a actual change in the
itemsets. Advantages of both approaches, in contrast to
those on separate data structures, are low runtime, easy de-
tection of temporal changes (the TTWTs containing tem-
poral information can be analyzed directly) and no extra
memory consumption.

Usually, the reaction time QTc is the most important
quality measure for change detection in data streams. The
approaches working on the pattern tree, particularly the
first one, can provide better values for QTc than those on
separate data structures, because it does not depend on the
output interval of the mining operator or a predefined inter-
val. Rather, both techniques can be integrated right into the
frequent itemset mining operator.

In this section, we briefly presented preliminary results
we achieved when investigating approaches for resource-
aware change detection. For now, we state that the choice
of algorithm depends on the goals actually desired by the
user. Under special circumstances several of the intro-
duced methods should be combined – when aiming for a

resource-aware, and moreover, resource-efficient, method,
those based on the pattern tree should be preferred. In
future works we will investigate approaches for change
detection more detailed, including the combination with
resource-adaptive techniques, considerations about achiev-
able qualities (mainly for QTc , but also other measures like
QTg

and QMa
have to be considered) as well as change

detection methods for general mining tasks.

4.4 General Applicability of the Approach
We are currently generalizing our approach of resource-
adaptive frequent itemset mining. Our work aims at making
the technique applicable to data stream mining algorithms
with certain characteristics in general.

To start with, there exist other algorithms for mining fre-
quent itemsets in data streams that use the same approach
of approximated frequencies as the FP-Stream algorithm,
e.g., [Manku and Motwani, 2002; Chang and Lee, 2004].
We can thus extend these algorithms in a way analog to
the modification of FP-Stream. In general, each algorithm
whose resource requirements depend on parameters like σ
and ε can be modified like that – with different impact on
the grade of adaptiveness.

Some of the presented methods to manipulate the size of
the pattern tree can be applied to these algorithms without
major changes to both method and algorithm. Despite the
usage of different data structures in these algorithms, it is
possible to adapt the size of their synopsis by varying the
values of σ and ε. The quality of the mining results will
remain a computable value that can be guaranteed like in
the extended FP-Stream algorithm.

A majority of data stream mining algorithms uses synop-
sis data structures to capture the content of the data stream.
Since these synopses only represent an approximation of
the stream’s actual content, there is always the notion of
quality associated with it. Our method can thus be applied
in principle to such stream mining algorithms as well. In
[Franke et al., 2005] we already successfully applied the
approach in order to implement a resource-aware cluster-
ing operator for PIPES.

5 Evaluation
The purpose of the following evaluation is twofold: at first
we will show how we achieve the aimed quality awareness.
To show this, we will evaluate how good the algorithms
achieve a claimed quality and how exact the corresponding
calculations are. In the context of the proposed stream min-
ing approach quality awareness comes along with the adap-
tion to provided resources and the determination of needed
resources concerning aimed quality measures. This is the
second objective of this section: we will show that memory
requirements are approximated satisfyingly and that they
are met finally, and which conclusions we can draw to the
achieved quality.

Before evaluating our quality-aware frequent itemset
mining approach we conducted a series of tests with the
original FP-Stream algorithm. We figured out how the al-
gorithm behaves for different parameter settings of ε, σ and
b. We used synthetic data generated by the IBM market-
basket data generator. In the first set of experiments 1M
transactions were generated using 1K distinct items and an
average transaction length of 3. All other parameters were
set to their default values from the generator.

Since in the original approach a batch does not cover a
constant period of time but a constant number of transac-

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
vg

. n
um

be
r o

f n
od

es

Value of epsilon (in percent of sigma)

 support 0.05
 support 0.07
 support 0.1

(a) Varying support and epsilon

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 5000 10000 15000 20000 25000 30000

A
vg

. n
um

be
r o

f n
od

es

Number of transactions per batch

Support 0.025
Support 0.05
Support 0.1

(b) Varying support and batch size

 150
 200
 250
 300
 350
 400

 0 20 40 60 80 100 120 140
 4
 6
 8
 10
 12
 14

1
/ (

ep
si

lo
n/

si
gm

a)

Number of batches
actual number of nodes

maximum number of nodes
1 / (epsilon/sigma)N

um
be

r o
f n

od
es

 in
 p

at
te

rn
 tr

ee

(c) Resource awareness

Figure 3: Average number of nodes in a pattern tree

tions, we set the size of a batch to 5000 transactions. Fig-
ure 3(a) shows some of our experimental results with the
original algorithm. We measured the average number of
nodes in a pattern tree for three different values of σ. For
each σ we run the algorithm with various ratios between ε
and σ to simulate different quality demands. As expected
the number of nodes decreases with rising ε and σ.

Figure 3(b) shows results of another series of tests we
conducted with the original algorithm. We processed the
test data with different values of σ (always setting ε = 0.1 ·
σ) and with various batch sizes. The number of nodes in the
pattern tree does not decrease significantly when the batch
size is highly raised.

We also processed test data having more average items
per transactions (5, 10) and/or more distinct items (5K,
10K) and we additionally tried different batch sizes (1000
to 30000). The main conclusion is always as stated above.
One remarkable thing we noticed is that for small batch
sizes the number of nodes in a pattern tree is far from being
constant. For example, when processing testing data with
1M transactions, 1K distinct items and average transaction
length of 3 we set σ = 0.025, ε = 0.1 · σ and the batch
size to 1000 transactions. The number of nodes in the re-
sulting pattern tree oscillated between under 1000 to nearly
5000. When processing the same data set with higher val-
ues of σ, ε or batch size this range got significantly smaller.
For a support of 0.07 the difference between the minimum
and the maximum value of the number of nodes was 45.
Remainders of this effect can be seen in Figure 3(b) for
σ = 0.025 by the sharp decrease of the number of nodes
for low batch sizes.

For evaluating the quality-aware frequent itemset min-
ing approach, we again generated data sets with 1M trans-
actions using 1K distinct items and an average transaction
length of 3. Our algorithm consumed the stream of trans-
actions from a source with a constant output rate of 3 sec-
onds. The value b of the finest granularity of time was set
to 15000 seconds, so each processed batch contained 5000
transactions. The value of σ was set to 0.05.

Firstly, we wanted to demonstrate that our approach can
cope with changing memory conditions. Instead of limit-
ing the actual amount of available memory we limited the
number of nodes that the pattern tree may have. One could
calculate the actual amount of memory needed, since the
maximum size of a TTWT can be estimated as described in
Section 4.2.

Initially we limited the maximum number of nodes the
generated pattern tree may have to 340. As we do not have
a formula yielding the maximum number of nodes in a pat-
tern tree for a given set of parameters, we had to choose an
adequate value of ε for the algorithm. Our previous exper-
iments showed, that ε = 0.1 · σ = 0.005 would be a good
value to start.

We started the algorithm and decreased the maximum
number of nodes after 40 batches to 200 nodes. We then
raised it again after 40 batches to a value of 400 nodes. Fig-

ure 3(c) shows the algorithm’s behavior. After 40 batches,
it had to raise the value of ε several times to get its filling
factor below 1. Then, after the next 40 batches, the algo-
rithm lowered the value of ε after every processed batch
until a tree size was reached that was close enough to the
maximum according to the filling factor. Figure 3(c) also
displays the quality of the stream mining for every batch,
i.e., the value of 1/ (ε/σ).

 0
 5

 10
 15
 20
 25
 30
 35

N
um

be
r o

f i
te

m
se

ts
(sigma − averaged eps)*W

sigma*W
 26000

Actual frequency of the itemset

Figure 4: Quality awareness

With
our second
series of
tests of our
quality-
aware
approach
we demon-
strate the
quality of
our mining
results. We
started the
algorithm

using option 1 of our proposed techniques for adjusting
the size of the pattern tree, i.e., we change the value of ε
when necessary. The experimental settings are equal to
these of the above test. Only this time we set σ = 0.025
and ε = 0.2 · σ to get any frequent itemsets at all. The
experiments show that we estimated the overall quality of
our mining results ranging over several batches (and thus
several values of ε) correctly and that it is in fact suitable
to average distinct values of ε as described.

First we run our approach once to get the value of ε̂,
which was approximately 0.00765. Then we used the orig-
inal FP tree algorithm to get the actual set of frequent item-
sets from our test data. We also got the actual frequen-
cies of all itemsets having frequencies between (σ − ε̂)
and a little less and the required support. Then, we ran
our quality-aware approach and asked for the set of fre-
quent itemsets after the 120th batch. We set the time pe-
riod [ts, te] to the whole period of time the stream was
processed so far. So the window we requested contained
W = 600000 transactions. After we received the result,
we compared the output to what we knew from the FP-
growth method. For each itemset our approach delivered,
we looked up its real frequency and printed these infor-
mation in the histogram shown by Figure 4. All itemsets
our approach output were inserted in frequency buckets,
according to their real frequency which we gained through
using the FP tree algorithm.

Figure 4 shows that the output contained no itemsets
having frequency less than (σ − ε̂) · W . The histogram
also shows that exactly 23 itemsets having frequency of at
least σ were delivered. These itemsets are the same as FP-
growth delivered.

All in all the experiments met our expectations. In
[Franke et al., 2005] we also conducted similar experi-

ments for a resource-aware clustering strategy, which em-
phasize the results showed here. The approximations of
memory usage hold, the quality deduced from the available
resources is close to the actually achieved quality. This is
true for all examined quality measures, as far as our tests
can show that. Of course, we have to do a couple of ex-
tended test series, including different parameter settings,
varying stream characteristics and a deeper analysis of sev-
eral (classes of) quality measures. With the results of these
subsequent tests we could finally demonstrate the quality
and resource awareness already achieved in this work.

6 Conclusion
In this paper, we argued that quality of analysis results is
an important issue of mining in data streams. The rea-
son is that stream mining can be usually performed only
on a resource-limited subset or approximation of the en-
tire stream, which affects different measures of data quality.
Based on specific quality measures for stream mining, we
investigated and enhanced a frequent itemset mining tech-
nique in order to estimate the quality depending on the cur-
rent resource situation (mainly the available memory) as
well as to allocate resources needed for guaranteeing user-
specified quality requirements. Furthermore, we gave di-
rections for making a whole class of stream mining algo-
rithms resource- and quality-aware, including complemen-
tary tasks such as application specific change detection.

Beside these goals and the mentioned considerations
about resource-aware approaches for change detection in
data streams we will also apply the introduced techniques
to other mining primitives. Based on the earned experi-
ences about the method’s practical applicability and the re-
flections on different quality measures we plan to build a
formal framework for resource-adaptive stream mining un-
der quality guarantees. This includes the definition of the
concrete quality/resource functions r and r.

From our point of view, other resource requirements than
memory consumption of stream synopses have to be re-
garded as well. For instance, beside the memory required
by the pattern tree itself, the algorithm needs to have ad-
ditional memory available during runtime. This memory
is used for the actual computations and for storing two
batches, the one that is currently processed as well as the
one that is currently build from the newly arriving trans-
actions. When considering the computations done by the
FP-Stream algorithm, we note that the FP-growth method
used to determine the batch’s frequent itemsets is very ex-
pensive in terms of memory requirements. Using a more
memory efficient FP-growth method as proposed and im-
plemented by Özkural and Aykanat [Özkural and Aykanat,
2004] would lead to decreased overall memory require-
ments of the algorithm.

Moreover, in addition to memory awareness we will take
the algorithms’ runtime into account. In this context several
additional aspects have to be considered, like the stream-
ing rate of the incoming data and the runtime overhead im-
posed by our extension. In addition, we will have to deal
with the conflict that adding resource adaptiveness to an
algorithm imposes a runtime and memory overhead itself.

Finally, we have addressed only operator-locally param-
eters like the amount of memory available for this specific
operator. In future work, we plan to take also global prop-
erties of the whole analysis pipeline into account, e.g. load
shedding and windowing operators, which have an impact
on the output quality, too.

References
[Berti-Équille, 2006] L. Berti-Équille. Contributions to

Quality-Aware Online Query Processing. IEEE Data
Eng. Bull., 29(2):32–42, 2006.

[Chang and Lee, 2004] J. H. Chang and W. S. Lee. A
Sliding Window Method for Finding Recently Frequent
Itemsets over Online Data Streams. Journal of Informa-
tion Science and Engineering, 20(4):753–762, 2004.

[d. Bercken et al., 2001] J. V. d. Bercken, B. Blohsfeld, J.-
P. Dittrich, J. Krämer, T. Schäfer, M. Schneider, and
B. Seeger. XXL - A Library Approach to Supporting Ef-
ficient Implementations of Advanced Database Queries.
In VLDB 2001, pages 39–48, 2001.

[Franke et al., 2005] C. Franke, M. Hartung, M. Karnst-
edt, and K. Sattler. Quality-Aware Mining of Data
Streams. In IQ, 2005.

[Gaber and Yu, 2006] M. M. Gaber and Ph. S. Yu. A
framework for resource-aware knowledge discovery in
data streams: a holistic approach with its application to
clustering. In SAC’06, pages 649–656, 2006.

[Gaber et al., 2003] M. M. Gaber, Sh. Krishnaswamy, and
A. Zaslavsky. Adaptive mining techniques for data
streams using algorithm output granularity. In The Aus-
tralasian Data Mining Workshop, 2003.

[Giannella et al., 2003a] C. Giannella, J. Han, J. Pei,
X. Yan, and P. S. Yu. Mining Frequent Patterns in Data
Streams at Multiple Time Granularities. In Workshop on
Next Generation Data Mining, 2003.

[Giannella et al., 2003b] C. Giannella, J. Han, E. Robert-
son, and C. Liu. Mining Frequent Itemsets over Arbi-
trary Time Intervals in Data Streams. Technical report,
Indiana University, 2003.

[Han et al., 2000] J. Han, J. Pei, and Y. Yin. Mining Fre-
quent Patterns without Candidate Generation. In SIG-
MOD 2000, Dallas, USA, pages 1–12, 2000.

[Krämer and Seeger, 2004] J. Krämer and B. Seeger.
PIPES - A Public Infrastructure for Processing and Ex-
ploring Streams. In SIGMOD 2004, pages 925–926,
2004.

[Manku and Motwani, 2002] G. S. Manku and R. Mot-
wani. Approximate Frequency Counts over Data
Streams. In VLDB 2002, Hong Kong, China, pages 346–
357, 2002.

[Özkural and Aykanat, 2004] E. Özkural and C. Aykanat.
A Space Optimization for FP-Growth. In ICDM
Workshop on Frequent Itemset Mining Implementations,
2004.

[Tan and Kumar, 2000] P. Tan and V. Kumar. Interesting-
ness Measures for Association Patterns: A Perspective.
Technical report, University of Minnesota, 2000.

[Teng et al., 2004] W.-G. Teng, M.-S. Chen, and Ph. S.
Yu. Resource-aware mining with variable granularities
in data streams. In SDM 2004, 2004.

[Toivonen et al., 1995] H. Toivonen, M. Klemettinen,
P. Ronkainen, K. Haton, and H. Mannila. Pruning and
grouping discovered association rules. In ECML Work-
shop on Statistics, Machine Learning and Knowledge
Discovery in Databases, pages 47–52, 1995.

