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Abstract. Temporal and geographic information needs are frequent and
important but not well served by standard IR systems. There are nei-
ther good ways to add temporal or geographic constraints to a normal
text query, nor are geographic and temporal expressions in the docu-
ments interpreted as such kind of information, i.e., their semantics is
not exploited. Recent approaches address such needs by extracting and
normalizing temporal and geographic expressions from documents. They
calculate specific scores for the temporal and/or geographic parts of a
query. However, all approaches assume independence between the differ-
ent query parts.
In this paper, we present a new model to rank documents according to
combined textual, temporal, and geographic queries. In this model, the
independence assumption between the query parts is eliminated by cal-
culating different proximity scores. Thus, documents are regarded to be
more relevant if terms and expressions satisfying the different query parts
occur close to each other in a document. In addition, we present a second
type of proximity feature addressing the problem of sparse results. For
this, we determine the temporal and geographic distance between expres-
sions in a document and the queried time interval and geographic region.
This allows to take into account documents containing expressions close
to the time interval or region of interest. As our evaluations based on the
NTCIR-GeoTime data show, our proposed model outperforms baseline
models that do not use either of proximity information.

1 Introduction

In many types of documents, temporal and geographic information plays a piv-
otal role. Unfortunately, users’ temporal and geographic information needs are
not well handled by standard IR systems although such aspects of queries are im-
portant in many search scenarios. For example, Nunes et al. report that 1.5% of
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the queries in an analyzed query log contain explicit temporal information [11].
Zhang et al. attest the importance of geographic information by reporting that
12.7% of the queries in an analyzed query log contain some kind of geographic
information [22].

There probably would be even more search queries that include temporal
and geographic information needs if there were better ways to properly query for
documents whose content is constrained to specific time intervals or geographic
regions. However, in queries as well as in documents, temporal and geographic
expressions are usually treated in the same way as regular terms. Thus, their
meaning is lost and cannot be exploited to satisfy respective information needs.

A typical search scenario with a combination of a textual, temporal, and
geographic information need is to query for documents about events, which are
composed of a specific time and some specific place. Assume, for example, the
information need “world records between 1965 and 1974 in Central Europe”.
Here, one is faced with two problems: (i) the time interval and the geographic
region have to be interpreted as such kind of information, and (ii) temporal
and geographic expressions in the documents have to be verified if they belong
to the specified interval and region, respectively. However, if temporal and ge-
ographic expressions are not identified and normalized, a search engine cannot
assign different relevance scores to different documents. Consider the two sim-
ple documents “In 1972, he set a world record in Munich” and “He set a world
record in Beijing in 2008”. By identifying temporal and geographic expressions,
it is possible to use the knowledge that Munich is located in Central Europe
while Beijing is not, and that 1972 is within the interval 1965 to 1974, while
2008 is not. This issue is even more problematic if relative expressions such as
“ten years later” or “in the following month” occur in a document.

To address the above shortcomings, there recently have been approaches to
incorporate temporal information [2], geographic information [13], and both [9]
into retrieval models. However, all approaches assume that the textual, geo-
graphic, and temporal information needs formulated in a query are independent
of each other. Thus, for such queries, the models calculate independent scores for
each part and finally combine them into a single score for ranking documents.
However, this independence assumption is problematic because the proximity
among expressions in a document satisfying the query terms is disregarded.
Similar to the previous example, assume the two simple documents (A) “He set
a world record in 1972 . . . he died in 2008” and (B) “He set a world record in
2008 . . . he was born in 1972”, (A) should be given a higher relevance score for
the example query due to the proximity between “world record” and “1972” in
the document.

Another aspect not considered by related approaches is that the spatial and
temporal proximity of expressions in documents to the temporal and spatial
query terms is not considered at all. Assume the simple query “world record
1990 Germany”. Also assume there is no document satisfying both the temporal
and spatial information needs but there are three documents (A) “In 1991 he
set a world record in Germany”, (B) “In 1990 he set a world record in France”,
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and (C) “In 1992 he set a world record in Japan”. Both documents (A) and
(B) seem to be close to satisfying the information need as 1990 is temporally
close to 1991, and France is spatially close to Germany. Both are temporally and
spatially in closer proximity than “1992” and “Japan” in document (C).

In this paper, we present a novel ranking approach that effectively considers
both the proximity of text, temporal, and geographic expressions in documents
and the spatial and temporal proximity of expressions to query terms. For this,
we build on the well-known and widely used ranking model Okapi BM25 [14] and
extend it to incorporate the above two proximity features. For determining tem-
poral and geographic proximity, we employ standard distance metrics for time
and space as well as spatial information associated with geographic expressions
in documents. Using the semantics of distances and proximity in space and time
naturally allows to increase the number of ranked documents because documents
not fully satisfying the temporal and geographic queries can be judged based on
their distance to the interval/region of interest. Both temporal and geographic
expressions detected in documents are suitable encoded for efficient look-ups to
determine documents relevant to queries that formulate temporal and spatial
information needs.

In summary, the main contributions of this paper are:

– An IR model that addresses textual, temporal, and geographic information
needs, and which – in contrast to previous works – takes into account the
dependency between the three query parts by using proximity information
for the final ranking.

– A proximity feature, as part of the IR model, for processing temporal and
geographic information needs by calculating temporal and geographic dis-
tances between expressions in documents and the query interval/region if
the query is not directly matched by documents.

– An extensive evaluation of the proposed ranking model using datasets and
query patterns adopted from the NTCIR-GeoTime challenge.

The remainder of the paper is structured as follows. After a brief review
of related work in the following section, we detail the problem statement and
assumptions in Section 3. The description of our ranking model in Section 4 is
followed by a presentation of the evaluation in Section 5.

2 Related Work

Temporal and geographic information retrieval are often considered separately.
Current research trends and challenges in temporal IR such as temporal clus-
tering of search results and temporal querying are discussed in [1]. While there
are some approaches to improve search results by taking into account document
creation times, e.g., to favor recent documents [3, 7], there is only little work us-
ing temporal information mentioned in documents for querying. Berberich et al.
do so by integrating temporal information into a language model for addressing
temporal information needs [2]. In contrast to using temporal information for
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querying, there is more work in geographic IR to use geographic information ex-
tracted from documents for querying document collections, e.g., STEWARD [8],
SPIRIT [13], and several works that appeared in the Geographic Information
Retrieval Workshop series.

Recently, there have been approaches to combine temporal and geographic
IR. For example, event-centric search and exploration of document collections
with events being considered appropriate combinations of temporal and geo-
graphic expressions occurring in documents is presented in [16]. However, the
authors do not provide a ranking approach for their framework. In particular,
none of the above approaches consider any proximity aspects of expressions in
the documents matching temporal/geographic parts of search queries.

In addition to the methods outlined above, the geographic and temporal
information retrieval challenges NTCIR-GeoTime were organized [5, 6]. In com-
parison to our work, the focus of these challenges is on querying for temporal
and geographic answers, i.e., to process queries of the form “when and where
did something happen”. As pointed out by the organizers, the results show that
“semantic questions require semantic processing to deliver results beyond bag-
of-words search” [4]. That is, temporal and geographic information embedded
in documents should be handled in a special way. Most similar to our work is a
Lucene extension to process temporal and geographic queries [9]. However, they
assume that the textual, temporal, and geographic parts of a query are indepen-
dent of each other and do not take into account the proximity in the documents
between terms satisfying the different query parts. This is a crucial weakness as
proximity of query terms in documents plays already an important role in stan-
dard (commercial) search engines. The same independence assumption for query
terms as done in the Lucene extension is also made in the methods proposed
in [2] and [13] for temporal and geographic queries, respectively.

Clearly, there has been substantial work on showing that using information
about the proximity of terms matching query terms in documents significantly
improves search result, e.g., by adding a proximity score to Okapi BM25 [14]. In
our work, we extend these ideas in two ways. First, we develop a proximity mea-
sure for terms and expressions satisfying the textual, temporal, and geographic
parts of a query and thus eliminate the independence assumption adopted in pre-
vious approaches on temporal and/or geographic IR. For this, we use the results
of the detailed analysis of different methods to determine the proximity between
query terms described in [19]. Second, taking the full semantics of temporal and
geographic expressions in documents and queries into account, as suggested in
the context of the NTCIR-GeoTime challenges, our approach furthermore adds
temporal and geographic proximity aspects to the ranking approach.

3 Problem Statement and Model Assumptions

In this section, we formulate the problem statement, describe some basic con-
cepts regarding temporal and geographic information embedded in documents,
and define assumptions for our proximity2-aware ranking model for textual, tem-
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poral, and geographic information needs. The model itself will be introduced in
Section 4.

Problem Statement: Given a document collection D and a search
query composed of a textual, a temporal, and a geographic part, return
a list of documents di ∈ D ranked by a score measuring how well the
combined information need is satisfied. The score should consider the
documents’ relevance on all parts of the information need and a prox-
imity score covering the distance between terms satisfying the different
parts of the information need in the documents.

3.1 Temporal and Geographic Information
Extraction

Key to our proposed approach is that in a preprocessing step for a given cor-
pus, temporal and geographic expressions in documents are identified as such
and normalized in a way that allows for efficient comparison and matching. As
indicated in the introduction, the main reason for temporal and geographic in-
formation not being well handled by standard search engines is that respective
expressions in documents are usually treated as regular terms, that is, without
any further semantics.

To accomplish the above preprocessing tasks, for temporal expressions so-
called temporal taggers are used. A temporal tagger aims at identifying terms in
a document (or query) that correspond to temporal concepts. These can be ei-
ther explicit expressions, such as “December 25, 2009” or “March, 2013”, relative
expressions, e.g., “on Monday” or “last year”, or implicit temporal expressions,
such as “Christmas 2009”. While explicit expressions are easy to normalize into
some standard format, e.g., based on TimeML [12], normalizing relative expres-
sions requires some reference time, which can either be the document creation
time or some explicit expression in the document. Implicit expressions require
some background knowledge, for example, the names and dates of holidays. For
the above expressions, for example, a temporal tagger would normalize “Decem-
ber 25, 2009” and “Christmas 2009” both to the same date value “2009-12-25”.
Note that expressions can also be time intervals with normalized start and end
times (see, e.g., [12]). The result of a temporal tagger, when applied to a docu-
ment, is basically a set of triples, each triple consisting of the term(s) forming
the temporal expression t, the offset p(t) of the expression in the document, and
the normalized value v(t).

Similarly, for geographic information embedded in documents (and queries),
geo-taggers are used to detect and normalize respective expressions. Normaliza-
tion typically associates a spatial object, such as a point represented by latitude
and longitude values or a bounding box, with each expression. Some geo-taggers
such as Yahoo Placemaker [21] also provide further useful concept information
about the geographic expressions found in a document. For example, for the ex-
pression “Munich” it would also give the hierarchy “Munich, Germany, Europe”.
Especially this additional information is useful for determining the proximity of
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geographic expressions based on their spatial distance, e.g., to a location men-
tioned in a query. Consequently, for a geographic expression g found in a doc-
ument, a geo-tagger returns the expression g, its offset p(g) in the document,
and its normalized value v(g), which can be a complex object such as a point or
bounding box.

3.2 Model Assumptions

Based on the explanations given in the previous section, we make the following
assumptions for our model.
Profiles. Given a document collection D, all documents di ∈ D are preprocessed
with a temporal tagger and a geo-tagger. Thus, the temporal and geographic
expressions in the documents are extracted, normalized to their standard values,
and organized in temporal and geographic document profiles, respectively as:

tdp(d) = {〈v(t)1, p(t)1〉, ..., 〈v(t)n, p(t)n〉}
gdp(d) = {〈v(g)1, p(g)1〉, ..., 〈v(g)m, p(g)m〉}
In Section 5, we will give more details on how these profiles are computed and

managed for a given document collection in a preprocessing step for subsequent
efficient lookup and ranking tasks required by our framework.
Queries. A query consists of a textual part qtext (terms), a temporal part qtemp
(one or more time intervals), and a geographic part qgeo (one or more geographic
regions specified by, e.g., bounding boxes). Thus, we define a query as:

q = {qtext, qtemp, qgeo}
It should be noted that the user can specify such a query in different ways,

depending on what query interface is provided. For a normal textual query,
geographic and temporal expression (including time intervals such as “1999 to
2011”) are identified and normalized, very much in the same way as expressions
in documents are handled. One can also envision a graphical query interface
in which the user specifies a point location or a bounding box plus some time
interval using a time-slider. Here, one would already obtain normalized values
for respective query components.

The document profiles are used to evaluate qtemp and qgeo and to determine
the temporal and geographic proximity – based on normalized values – between
expressions in the documents and the query parts. Again, implementation details
on how to efficiently process qtemp and qgeo will be given in Section 5.

4 Proximity2-aware Ranking Model

Based on the assumptions described in the previous section, we now incremen-
tally develop our proximity2-aware ranking model for textual, temporal, and
geographic information needs formulated in search queries. For this, we first de-
scribe the key characteristics of the model. For a search query, we then detail the
calculations of the textual score (Section 4.2), the temporal and the geo scores
(Section 4.3), and the term proximity score (Section 4.4). Finally, we describe
how the single scores are combined into one overall ranking score.
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4.1 Model Characteristics

The key characteristics of the model can be summarized as follows:

– For the individual components qtext, qtemp, and qgeo present in a search
query, single scores are calculated.

– Given a document, based on the distances between terms and expressions in
the document satisfying the different query parts, a score is calculated (term
proximity score).

– There will typically be documents not directly satisfying the qtemp and qgeo
parts of a query. Assume, for example, if qtemp = “March 2013” but in a
document the only temporal expression found is “December 2012”. For such
documents, still positive temporal and geographic scores can be calculated.
This is because the temporal and geographic distances between expressions
in the documents and the time interval and region specified in a query are
taken into account (temporal and geographic proximity).

4.2 Textual Ranking

One part of our proximity2-aware ranking model is to calculate a score stext
for the textual part qtext of a query. For this, we use Okapi BM25 [15], a well-
known standard measure for ranking documents according to a textual query.
This measure is mainly based on the term frequency c(w, d) and the inverse
document frequency (first fraction in Equation 1, with df(w) being the number of
documents containing term w). For the text part qtext of a query and a document
d ∈ D with |D| = N , it is defined as follows:

stext(qtext, d) :=
∑

w∈qtext∩d

ln
N − df(w) + 0.5

df(w) + 0.5

× (k1 + 1)× c(w, d)

k1((1− b) + b dlen
Davgl

) + c(w, d)

(1)

Note that the score is length-normalized using the length dlen of a document
d and the average document length Davgl of all documents in D. The param-
eters k1 ∈ [1.2, 2.0] and b = 0.75 calibrate term frequency scaling and length
normalization scaling [10]. For every document di ∈ D, this formula determines
a textual score stext(qtext, di) representing the relevance of document di with
respect to qtext. Based on these key concepts of this ranking formula, in the
following, we develop our ranking functions for qtemp and qgeo.

4.3 Temporal and Geographic Ranking

Similar to the score stext, we want to calculate the scores stemp and sgeo repre-
senting how well a document satisfies the other two query parts qtemp and qgeo,
respectively. A difference between validating qx (with qx ∈ {qtemp,qgeo}) and
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validating qtext is that qx may consist of one or more time intervals/geographic
regions and qtext consists of one or more terms. More importantly, the regu-
lar terms considered in stext and intervals/regions have different characteristics.
While the terms matching qtext directly occur “as is” in documents (after prepro-
cessing such as stemming), expressions that may match qx have to be validated
based on their normalized values and, in addition, do not necessarily have to
completely match qx. These differences have to be taken into account when cal-
culating stemp and sgeo following the idea of computing stext.

Given a query qx and a document profile xdp(d) of a document d (with
xdp(d) ∈ {tdp(d), gdp(d)}), the normalized values of expressions in xdp(d) can
(i) be inside qx, (ii) overlap qx, or (iii) be outside qx. Assume, for example,
the normalized query time interval qtemp = [1965, 1974]. The expression “1972”
corresponds to case (i), “1960s” to case (ii), and “1960” to case (iii). Note that
for case (i), an expression may cover different parts of a query interval/region.
For example, “September 1972” and “1972” are both in qtemp but cover different
parts of it due to their different granularities. Berberich et al. assume for their
approach to satisfy temporal information needs that the more of the query time
interval is covered by a temporal expression, the more relevant the temporal
expression [2]. However, we argue that it is only important whether an expression
is within qx or not, and that the coverage of qx can be better determined based
on all expressions in xdp(d), as we will justify below.

Temporal and Geographic Proximity Due to the three different ways how
expressions in a profile xdp(d) are related to a query part qx, we cannot simply
use the term frequency as for regular terms matching qtext. Thus, we calculate
the weighted value frequency, vf , which aggregates the value weight vw of every
expression x ∈ xdp(d):

vf(qx, d) :=
∑

v(x)∈xdp(d)

vw(v(x), qx), with (2)

vw(v(x), qx) :=


1, if v(x) is in qx (i)
|v(x)∩qx|
|v(x)| , if v(x) overlaps qx (ii)

exp−
δ(v(x),qx)
|qx| , if v(x) is outside qx (iii)

The first two cases (i) and (ii) are straightforward: if v(x) is inside qx, we
want vw to be 1. If v(x) overlaps qx, we want vw to represent the proportion of

v(x) being inside of qx, i.e., |v(x)∩qx||v(x)| . For example, given qtemp = [1965, 1974],

then vw(“1960s”) = 1
2 and vw(“20th century”) = 1

10 .
For the third case (iii), however, that is, if v(x) is outside qx, we do not want

vw to be simply 0 as we want to distinguish if v(x) is (temporally/spatially)
close to qx or not. Thus, we introduce the first important proximity parameter
of our model to calculate the distance δ between the normalized value v(x) and
qx. This allows to score also documents with a sx > 0 (with sx ∈ {stemp, sgeo})
that do not contain expressions directly satisfying qx. We use the distance δ in
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relation to the “size” of qx, which is denoted |qx|. If qx is a temporal expression,
then, depending on the granularity of qx, it can be the number of days, months,
or years covered by qx. Similarly, if qx is a geographic expression, the size of
qx is simply the area described by qx (based on its normalized value). Given
two expressions qx1 and qx2 of the same type, intuitively, the following condition
should hold:

if δ(v(x), qx1) = δ(v(x), qx2) and |qx1| < |qx2|
then vw(δ(v(x), qx1)) < vw(δ(v(x), qx2)

In other words, the same distance between a normalized value v(x) and a nor-
malized query value should result in a lower value weight if the size of the query
interval/region is smaller.

For example, assume v(t) = 1972-09-03 and two temporal query parts q1 =
[1972-08-01, 1972-08-31] and q2 = [1972-08-30, 1972-08-31]. The distance to v(t)
is the same for both queries (3 days). However, due to the larger interval of
interest formulated by q1 (31 days), the distance of 3 days is less relevant than
in the second case, where the length of q2 is smaller (2 days). Examples for nor-
malized geographic expressions found in documents and two query regions are
devised similarly in our framework, based on the shortest distance between re-
spective regions and the area of regions. For geographic expressions, it obviously
becomes even simpler in case only geographic points (as normalized values) are
considered.

The desired behavior of the value weight function vw(v(x), qx) with δ > 0

can be described as follows: the smaller δ(v(x),qx)
|qx| , the lower vw(v(x), qx) with

its first derivative being negative and its second derivative being positive. This

concave behavior is obtained by an exponential term of the form exp−
δ(v(x),qx)
|qx| ,

so that we can summarize the behavior of the value weight function vw(v(x), qx)
as defined in Equation 2.

In summary, an important ingredient of our novel ranking model is that for
the temporal and geographic ranking functions, we use the weighted value fre-
quency instead of the standard term frequency for regular terms. This approach
appropriately considers the semantics of temporal and geographic expressions in
terms of proximity of time intervals and geographic regions, respectively, based
on well-defined distance metrics for time and space.

Coverage of the Query Interval/Region In the Okapi BM25 for the textual
ranking score stext, the second important feature besides the term frequency is
the inverse document frequency. It carries information about how characteris-
tic a document is for a query with respect to the document collection. For our
modifications to BM25 for calculating the temporal and geographic scores stemp
and sgeo, we combine information about the document collection with infor-
mation about the coverage of the query interval/region. Given qx (with qx ∈
{qtemp, qgeo}) and a document profile xdp(d) (with xdp(d) ∈ {tdp(d), gdp(d)}),
we calculate the ratio of distinct normalized values in xdp(d) and the number
of distinct normalized values in the combined document profile of all documents



10

xdp(D) overlapping qx. To avoid that the coverage is zero or undefined if a docu-
ment or the document collection contains no normalized values overlapping with
qx, we add 0.5 to both counts. This is important since temporal and geographic
scores should be positive in both cases for the temporal and geographic prox-
imity introduced above to work effectively. By this, the coverage of a document
without values overlapping with qx is larger than 1 and the coverage is the same
for all documents if no values in the document collection overlap with qx.

coverage(d, qx) :=
countdist(v(x) ∈ xdp(d) : v(x) ∩ qx 6= ∅) + 0.5

countdist(v(x) ∈ xdp(D) : v(x) ∩ qx 6= ∅) + 0.5
(3)

For example, given a temporal query “August 1972” and two documents with
the first containing some temporal expressions referring to “1972-08-01” and the
second containing some expressions referring to “1972-08-07” and “1972-08”,
respectively. In addition, in the corpus, there are ten distinct normalized values
of temporal expressions that (partially) match the temporal query. Then, the
temporal coverage of the first document is 1.5

10.5 and the temporal coverage of the
second document is 2.5

10.5 .
In our opinion, when being faced with a temporal or geographic query formu-

lated as time intervals or geographic regions, the most relevant document does
not necessarily cover the whole interval or region but contains many different
normalized values in the interval or region of interest compared to other docu-
ments. Thus, we use Equation 3 as corpus-dependent coverage instead of using
the plain coverage of qx or the inverse document frequency as for terms.

Temporal and Geographic Scores Replacing the inverse document fre-
quency by the coverage and the term frequency c by the weighted value fre-
quency vf in Equation 1, the temporal and geographic scores stemp and sgeo are
now calculated as follows:

stemp(qtemp, d) :=
∑

v∈qtemp

coverage(d, v)

× (k1 + 1)× vf(v, d)

k1((1− b) + b dlen
Davgl

) + vf(v, d)

(4)

sgeo(qgeo, d) :=
∑
v∈qgeo

coverage(d, v)

× (k1 + 1)× vf(v, d)

k1((1− b) + b dlen
Davgl

) + vf(v, d)

(5)

In the same way as stext is defined in Equation 1, these scores are length-
normalized, and the parameters k1 and b are used to calibrate the scaling be-
havior.



11

Thus far, we now have scores to rank the individual components qtext, qtemp
and qgeo, where for ranking qtemp and qgeo we introduced temporal and ge-
ographic proximity measures based on the distance of time intervals and ge-
ographic regions, respectively. We now turn to the second type of proximity
measure, the term proximity, as another important ingredient to our ranking
model.

4.4 Term Proximity Ranking

The relevance scores described in the previous sections represent independent
scores for the query parts qtext, qtemp, and qgeo with respect to a document. While
previous approaches combine such independent scores into a final ranking score
for a document, we argue that this independence assumption is problematic. As
illustrated in the example in Section 1, information about the proximity in a
document between terms and expressions satisfying qtext, qtemp, and qgeo should
be considered to reward documents in which the proximity among matching
expressions is small, and to penalize documents where such a proximity is large.

Tao and Zhai analyzed different ways to measure the proximity between query
terms matching a textual query in documents [19]. In their comparison of five
measures, the minimum pair distance (shortest distance of two different query
terms, independent of the number of query terms) performed best. Although
we are faced with a slightly different problem here, because the terms and ex-
pressions for which we want to measure the proximity are of different types, we
use their study as basis for developing the function to calculate the proximity
score sprox. For this, we transfer the minimum pair distance into a minimum
triple distance. Given a document, such a distance then is naturally defined as
the shortest distance among a term w of qtext, a temporal expression t satisfy-
ing qtemp, and a geographic expression g satisfying qgeo, denoted prox(w, t, g).
Clearly, the closer w, t, and g are together in a document, the higher should be
the ranking for that document with respect to the query.

In contrast to the original proximity measure for two terms, there is no need
that the three terms/expressions w, t, and g, respectively, occur within a few to-
kens, but it should be awarded if they occur within a few sentences. Thus, instead
of the original concave function, we use the following proximity transformation
function (containing cubic terms in both nominator and denominator):

sprox := exp
ln(0.5)×prox(w,t,g)3

503 (6)

The behavior of Equation 6 is shown in Figure 1. Assuming a typical sentence
length of 20 to 25 tokens [10], the function only slightly penalizes proximities
within one or two sentences, but significantly penalizes proximities larger than
three sentences since sprox is convex for proximities smaller than 50 tokens and
concave for larger proximities.
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Fig. 1. Ideal shape of the proximity transformation function.

4.5 Combined Ranking

Having defined the separate scores for the textual, temporal, geographic, and
proximity ranking, we are now finally faced with the same problem as similar
approaches, namely, how to combine the single scores in a meaningful way. A
typical way that also allows to specify weightings for the single scores is to
use a linear combination. For this, we first normalize the stext, stemp, and sgeo
scores by the maximum score for the given query, denoted ŝtext(q) etc. Thus, for
each query the highest textual, temporal, and geographic scores is set to 1. The
proximity score is already normalized, as described in the previous section. We
therefore obtain the following score for a query q and document d:

s(q, d) :=(1− αt − αg)
stext(q, d)

ŝtext(q)
+ αt

stemp(q, d)

ŝtemp(q)
+

αg
sgeo(q, d)

ŝgeo(q)
+ βsprox(q, d)

(7)

The weights αt and αg are used to weight the importance of the three query
components qtext, qtemp, and qgeo. In addition, β is used to weight the importance
of the proximity measure. In our evaluation, which is detailed in the next section,
we show the impact of varying the β parameter and analyze the influence of the
proximity feature of our model.

5 Evaluation

Evaluating a combination of textual, temporal, and geographic information needs
is difficult since there are no benchmarks from IR challenges such as TREC [20] in
which a query consists of a textual, a temporal, and a geographic part. However,
recently, the NTCIR-GeoTime challenges addressed a similar problem, namely
ranking documents of a given document collection for a query having temporal
and/or geographic aspects [5, 6].
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explicit positive explicit positive
topic constraint judgment topic constraint judgment
0001 9 0014 geo, time 31
0002 geo 335 0015 time 71
0003 5 0016 320
0004 38 0017 geo 24
0005 8 0018 time 58
0006 geo 112 0019 79
0007 8 0020 9
0008 geo 172 0021 time 3
0009 49 0022 time 15
0010 10 0023 geo 27
0011 time 96 0024 48
0012 36 0025 geo 19
0013 geo 18

Table 1. NTCIR-8 GeoTime topics with explicit constraints and the number of positive
judgments.

5.1 NTCIR-8 GeoTime Data

For our evaluation, we used the NTCIR-8 GeoTime dataset consisting of 25
queries (called topics). As document collection, the 2002 to 2005 articles of the
New York Times corpus are used (315,417 documents).1 In addition to the topics,
relevance judgments for each topic are also publicly available.2 In the context
of the GeoTime challenge, for each query the top-100 ranked documents of each
system of the participating teams were judged resulting in 17,423 judgments in
total. Many of the topics in the GeoTime data are of the form “where and when
happened X”, but there are also some queries with explicit temporal constraints,
explicit geographic constraints, or both. Table 1 gives an overview of the types
of explicit constraints as well as the number of relevant judged documents for
each topic. While we will have a closer look on the single topics when analyzing
the results in Section 5.4, the varying numbers of positive judgments directly
indicate the different levels of difficulty.

Due to the reproducibility and comparability of our evaluation results and
due to the lack of other, more suitable benchmarks, we performed our evaluation
based on the publicly available NTCIR-8 GeoTime data. However, to be able to
process all queries with our proximity2-aware ranking model, we had to slightly
adapt the model for the queries without explicit temporal and/or geographic
constraints. We describe these model adaptations in Section 5.2, where we also
discuss how the parameters in our model are set. Then, in Section 5.3, we outline
our document preprocessing, the used index structures, and the query processing.
The evaluation itself is finally presented in Section 5.4.

1The New York Times corpus is available from the linguistic data consortium
(http://www.ldc.upenn.edu/).

2The topics and relevance judgments are available from the Japanese National In-
stitute of Informatics (http://research.nii.ac.jp/ntcir/).
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5.2 Model Adaptation and Parameters

To be able to process all GeoTime queries and not only those with explicit
temporal and geographic constraints, we adapt our proximity2-aware model in
the following way: In the absence of explicit temporal or geographic constraints,
no stemp and sgeo are calculated, respectively. However, since all queries have
at least a latent temporal and geographic aspect (“when” and “where”), we
calculate sprox between terms matching the textual query and all temporal and
geographic expressions in the documents.

The parameters for stext, i.e., for the BM25 model, are set to standard values
(k1 = 1.2 and b = 0.75). The α-parameters of Equation 7 for weighting the single
scores stext, stemp, and sgeo are set as follows: if a temporal and a geographic
constraint are specified, αt and αg are set to 0.2, otherwise, they are set to 0. This
is motivated by the intuition that the textual relevance is more important than
the temporal and the geographic relevance on its own. If a document satisfies
either the temporal or the geographic constraint in addition to qtext, it should
be considered more relevant than a document not satisfying qtext but both the
temporal and the geographic constraints. In terms of the GeoTime judgments,
the former document would be considered as partially relevant while the latter
document would be considered as not relevant [5].

5.3 Implementation and Indexing

Preprocessing: As described in Section 3.1, it is crucial for our model that a
temporal tagger and a geo-tagger are applied in a preprocessing step to extract
and normalize temporal and geographic expressions from the documents. For
these two tasks, we use HeidelTime [17] and Yahoo! Placemaker [21], respectively.
In addition, the Porter stemmer is applied to the documents and stop words are
removed. Note that these preprocessing steps do not influence the efficiency of
the query processing and that all tasks are performed on a document level and
can thus be parallelized.

Query processing: The textual query is processed in the same way as the
documents, i.e., using the Porter stemmer and removing stop words. For the
temporal query, we assume that the intervals are specified using normalized val-
ues, e.g., “2001-11 to 2001-12”. For the geographic query, we assume that query
regions are formulated using their bounding box information. These assump-
tions are suitable for our evaluation since we translated the original descriptive
GeoTime topics into qtext, qgeo, and qtemp as shown in Table 2 and as will be
detailed in Section 5.4. Note, however, that other types of query interfaces are
possible, e.g., a map interface and a time-slider, or the textual formulation of
the temporal and geographic queries. In the latter case, the text query could be
analyzed with the temporal and geo-taggers, and separated into qtext, qtemp, and
qgeo automatically.

Strategy and indexes: For efficiency reasons, we run the following strate-
gies for calculating the combined ranking score s(q, d) detailed in Equation 7:
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Topic Original description, qtext for BL-text (underlined), qtext for
BL-bool and proximity2-aware models (bold)

qgeo and qtemp

01 When and where did Astrid Lindgren die?

02 When and where did Hurricane Katrina make landfall in
the United States?

United States

03 When and where did Paul Nitze die?
04 When and where did the SARS epidemic begin?

05 When and where did Katharine Hepburn die?

06 When and where did anti-government demonstrations
occur in Uzbekistan?

Uzbekistam

07 How old was Max Schmeling when he died, and where did
he die?

08 When and where did Chechen rebels take
Russians hostage in a theatre?

Russia

09 When and where did Rosa Parks die?
10 When was the decision made on siting the ITER and

where is it to be built?
11 Describe when and where train accidents occurred which

had fatalities in the period 2002 to 2005.
2002 to 2005

12 When and where did Yasser Arafat die?
13 What Portuguese colony was transferred to China and

when?
China

14 When and where did a volcano erupt in Africa during
2002?

2002 Africa

15 What American football team won the Superbowl in
2002, and where was the game played?

2002

16 When and where were the last three Winter Olympics
held?

17 When and where was a candidate for president of
a democratic South American country kidnapped by a
rebel group?

South America

18 What date was a country was invaded by the
United States in 2002?

2002

19 When and where did the funeral of Queen Elizabeth (the
Queen Mother) take place?

20 What country is the most recent to join the UN and when
did it join?

21 When and where were the 2010 Winter Olympics host
city location announced?

2010

22 When and where did a massive earthquake occur in
December 2003?

2003-12

23 When did the largest expansion of the European Union
take place, and which countries became members?

Europe

24 When and what country has banned cell phones?

25 How long after the Sumatra earthquake did the tsunami
hit Sri Lanka?

Sri Lanka

Table 2. GeoTime-1 original topic descriptions and translated queries used for the
different models. For qgeo, we show the names of the regions for better readability
although we use their bounding boxes.
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– We first calculate stext and calculate sgeo, stemp, and sprox only for the top-k
documents of the text query. For our evaluation, we set k to 2000, and thus
perform a re-ranking of the top-2000 ranked documents according to stext.

– The weighted value frequency detailed in Equation 2 for expressions not sat-
isfying qtemp or qgeo is only calculated for those documents that do not have
any normalized values of temporal/geographic expressions directly satisfying
qtemp or qgeo. This allows for a much more efficient temporal and geographic
query processing based on the indexes described next.

The indexes used to process queries with textual, temporal, and geographic
constraints efficiently, are as follows:

– For the stemmed words, a standard inverted index with term frequency in-
formation is used. Additionally, document frequency and document length
information are indexed. This is already sufficient to calculate stext as de-
scribed in Section 4.2.

– For the normalized values of temporal expressions, we create multiple in-
verted indexes – namely year-, month- and day-level inverted indexes with
value frequency information. Note that all fine-grained values are addition-
ally included in the indexes for coarser granularities, e.g., an expression nor-
malized to “1972-08-01” is listed in the day-level index, and as “1972-08”
and “1972” in the month- and year-level indexes. Depending on the granu-
larity of the query, this allows to directly determine which documents satisfy
qtemp.

– For the normalized values of geographic expressions, we use an R-tree to
index their latitude/longitude information. This allows to efficiently evalu-
ate topological predicates (see Section 4.3.1) and to retrieve all geographic
entities satisfying qgeo. Additionally, an inverted index is used to return all
documents containing expressions referring to these geographic entities.

– For calculating the term proximities, we additionally index the position in-
formation for each term/document and value/document pair.

– For calculating the weighted value frequencies in cases when a top-k textually
ranked document does not directly satisfy qtemp or qgeo, we directly access the
temporal/geographic document profile of the document and iterate over all
temporal/geographic expressions to calculate vw as described in Equation 2.
Note that there are usually much fewer temporal and geographic expressions
than regular terms in a document.

5.4 Evaluation Results

In Section 5.4, we present two baselines and the parameters used in our newly
developed ranking model. Then, we detail and analyze the evaluation results in
Section 5.4.

Baseline and Advanced Models We use the following two baseline models
as comparison to the proximity2-aware ranking model:
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– BL-text: The most simple way to handle temporal and geographic infor-
mation needs is to include them in the textual part of the query without
treating the temporal and geographic expressions neither in the query nor
in the documents in a special way. The BL-text queries are shown in Table 2
(underlined).

– BL-bool: Once temporal and geographic expressions are extracted and nor-
malized as detailed in Section 3.1, and the temporal and geographic informa-
tion needs are formally described as time intervals and regions, respectively,
we rank the documents according to qtext, and use qtemp and qgeo as boolean
constraints. This is a very strong baseline, which already uses the seman-
tics of temporal and geographic expressions – a feature usually not used by
standard search engines. Thus, all documents not satisfying the temporal
and geographic information needs are discarded from the results. If there
are no temporal or geographic constraints, documents without any temporal
or geographic expression are discarded.

In addition, we use our newly introduced ranking model with different values for
β, including β = 0, i.e., without using the proximity information for the final
ranking. The queries used as qtext, qgeo, and qtemp are also given in Table 2.

Evaluation Results The following evaluation metrics are used to compare the
different models with each other: precision at k (P@k), average precision at k
(AP@k) and normalized discounted cumulative gain at k documents (nDCG@k).
AP and nDCG have also been used to evaluate the systems of the NTCIR-8 Geo-
Time participants [5]. Note that some of the documents ranked top-100 by any
of our used methods do not have any judgment (neither relevant nor irrelevant)
from the GeoTime challenge. We set the judgment of those documents to “irrel-
evant” motivated by the fact that on average, there are almost 700 judgments
per topic, for documents, which have been retrieved as relevant by other sys-
tems. In addition, this allows the for simpler validation and comparability of our
evaluation results.

In Table 3, the evaluation results of the two baseline models and of our
ranking model with different β-weights for the term proximity are presented.
Independent of the evaluation metrics and the number of documents (k), the
first baseline BL-text is outperformed by the second baseline BL-bool. This
shows how important it is to consider the semantics of temporal and geographic
expressions, i.e., to extract and normalize temporal and geographic expressions
and to not consider them as regular terms.

The proximity2-aware ranking model outperforms both baseline approaches.
The best results are achieved with β set to 0.5, i.e., a medium weighting of the
term proximity feature. The results demonstrate in particular that the improve-
ments over both baselines are most remarkable when evaluating the top ranked
documents (k = 5 and k = 10). Since the relevance of the top-ranked documents
is most crucial for search engines, this shows the importance of taking into ac-
count the term proximity between regular terms satisfying qtext and expressions
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precision (P@k) average precision (AP@k) nDCG@k

method @5 @10 @20 @50 @5 @10 @20 @50 @100 @5 @10 @20 @50 @100

BL-text 44.8 42.0 36.2 29.9 35.6 34.3 27.7 25.6 23.6 45.0 44.8 44.2 46.8 47.2
BL-bool 48.0 44.0 38.6 32.7 40.0 37.6 30.7 29.6 27.7 49.1 47.8 47.2 51.0 52.1

β=0 47.2 42.8 36.6 30.1 39.2 36.8 28.8 26.5 25.6 48.1 46.6 45.1 46.7 48.7
β=0.1 49.6 44.0 39.0 31.2 42.0 38.8 32.2 29.4 28.4 50.5 48.1 47.8 49.3 51.0
β=0.3 51.2 45.6 41.4 33.3 43.3 39.1 34.3 31.6 28.9 52.0 49.5 50.3 52.2 52.6
β=0.5 51.2 46.8 41.6 32.9 44.9 40.6 34.5 31.7 28.8 53.2 51.1 51.2 52.9 52.6
β=0.7 49.6 46.8 41.4 32.4 43.8 40.1 33.9 30.7 27.8 51.6 50.5 50.5 51.8 51.5
β=0.9 49.6 46.8 41.4 32.3 43.6 40.1 34.1 30.7 27.7 51.5 50.5 50.3 51.5 50.9

Table 3. Evaluation results on all 25 NTCIR-8 GeoTime topics.

precision (P@k) average precision (AP@k) nDCG@k

method @5 @10 @20 @50 @5 @10 @20 @50 @100 @5 @10 @20 @50 @100

BL-text 65.7 64.3 57.1 46.9 60.6 56.4 42.8 39.2 33.1 68.7 66.9 61.5 64.0 60.5
BL-bool 71.4 67.1 59.3 51.1 63.4 56.5 45.7 44.7 38.8 73.4 69.8 63.9 69.3 66.7

β=0 68.6 64.3 57.9 46.3 58.0 53.2 43.1 41.0 39.0 68.8 66.0 61.4 63.8 64.5
β=0.1 77.1 67.1 62.1 49.4 66.5 58.1 50.1 47.0 44.2 76.6 69.9 66.2 68.7 68.8
β=0.3 74.3 67.1 64.3 52.6 63.3 56.1 51.5 49.9 42.7 73.5 68.9 67.0 70.9 68.4
β=0.5 74.3 68.6 63.6 50.9 66.2 59.0 50.6 48.2 40.4 75.0 70.7 67.1 69.6 66.1
β=0.7 74.3 68.6 63.6 50.0 66.3 59.0 50.6 47.2 39.3 74.9 70.6 67.0 68.7 64.4
β=0.9 74.3 67.1 65.0 49.4 65.8 58.0 53.3 47.8 39.8 74.7 69.5 67.9 68.2 63.5

Table 4. Evaluation results on GeoTime topics with explicit geographic constraints.

satisfying qtemp and qgeo in addition to considering the semantics of temporal
and geographic expressions (BL-bool).

Since the GeoTime topics are very heterogeneous, we split the results into
four groups for a more detailed analysis: topics with explicit geographic con-
straints (Table 4), topics with explicit temporal constraints (Table 5), the topic
with explicit temporal and geographic constraints (Table 6), and topics without
explicit constraints (Table 7).

The differences between the results for topics with geographic and temporal
constraints are huge. However, these differences are not due to our model but
due to the different topic difficulty. There are many more documents judged as
relevant for the topics with explicit geographic constraints than for those with
explicit temporal constraints (see Table 1). All topics with explicit temporal
constraints were among the most difficult topics in the data set as an analysis
by the GeoTime organizers showed [5]. Despite these differences, on both topic
sets, most of the observations discovered from the whole data set hold: (i) BL-
bool outperforms BL-text, (ii) the proximity2-aware model outperforms both
baselines in particular for the top-ranked documents (k = 5, k = 10) and with
a medium β-weight. The improvements for the top ranked documents are again
in particular remarkable for the topics with explicit temporal constraints.

In Table 6, the results for topic GeoTime-0014 are presented – the only topic
with explicit temporal and explicit geographic constraints. The huge differences
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precision (P@k) average precision (AP@k) nDCG@k

method @5 @10 @20 @50 @5 @10 @20 @50 @100 @5 @10 @20 @50 @100

BL-text 20.0 16.0 14.0 11.2 6.9 5.7 4.2 4.1 3.8 15.0 13.8 14.2 16.5 16.6
BL-bool 12.0 12.0 20.0 16.4 6.0 6.4 11.4 12.2 11.4 11.5 11.9 18.6 22.9 23.3

β=0 12.0 10.0 12.0 12.0 9.1 7.3 5.8 4.5 4.1 12.8 11.3 12.1 12.0 14.3
β=0.1 12.0 12.0 14.0 13.6 9.1 8.5 6.1 5.5 5.3 12.8 12.6 14.0 16.4 17.3
β=0.3 20.0 18.0 18.0 16.0 15.1 12.2 10.3 9.3 9.1 21.4 19.5 21.5 23.2 25.2
β=0.5 20.0 22.0 20.0 17.2 16.7 14.5 11.6 10.7 9.7 22.1 22.9 23.9 27.3 26.4
β=0.7 24.0 22.0 19.0 17.2 19.9 15.0 11.1 10.8 9.9 24.7 23.1 23.3 27.4 26.6
β=0.9 24.0 26.0 19.0 17.6 20.7 17.1 9.7 10.4 9.3 25.0 25.8 23.5 27.7 26.7

Table 5. Evaluation results on GeoTime topics with explicit temporal constraints.

precision (P@k) average precision (AP@k) nDCG@k

method @5 @10 @20 @50 @5 @10 @20 @50 @100 @5 @10 @20 @50 @100

BL-text 20.0 40.0 35.0 18.0 4.0 14.6 10.0 6.0 7.2 13.1 30.6 30.2 27.2 32.3
BL-bool 100 100 55.0 36.0 100 100 31.5 24.6 30.3 100 100 68.4 66.2 77.1

β=0 100 90.0 50.0 22.0 100 90.0 27.5 13.9 13.7 100 93.6 64.1 50.4 52.0
β=0.1 100 100 55.0 24.0 100 100 32.7 15.9 17.5 100 100 68.5 53.5 60.3
β=0.3 100 100 75.0 34.0 100 100 55.3 31.0 30.8 100 100 82.2 66.4 68.3
β=0.5 100 100 75.0 36.0 100 100 55.7 33.2 31.7 100 100 82.3 68.6 68.6
β=0.7 100 100 75.0 36.0 100 100 54.8 32.5 31.1 100 100 82.3 68.5 68.5
β=0.9 100 100 75.0 36.0 100 100 54.5 32.2 30.7 100 100 82.2 68.5 68.5

Table 6. Evaluation results on the GeoTime topic with explicit temporal and geo-
graphic constraints.

precision (P@k) average precision (AP@k) nDCG@k

method @5 @10 @20 @50 @5 @10 @20 @50 @100 @5 @10 @20 @50 @100

BL-text 45.0 40.0 33.3 28.8 35.6 35.0 30.1 28.3 27.7 46.4 46.1 47.8 50.9 53.5
BL-bool 45.0 39.2 32.9 28.5 35.6 34.5 30.0 28.4 27.9 46.4 45.6 47.5 50.7 53.4

β=0 45.0 40.0 33.3 28.8 35.6 35.0 30.1 28.3 27.7 46.4 46.1 47.8 50.9 53.5
β=0.1 45.0 39.2 34.6 28.5 36.6 35.0 32.6 30.1 29.6 47.0 45.9 49.3 51.4 53.8
β=0.3 46.7 40.0 35.0 29.2 38.6 35.3 32.5 30.2 29.0 48.2 46.5 49.9 52.2 53.4
β=0.5 46.7 40.0 35.0 28.7 39.6 35.8 33.0 30.7 29.8 49.4 47.3 50.8 52.6 54.2
β=0.7 41.7 40.0 35.0 28.2 35.9 34.6 31.9 29.3 28.4 45.1 46.1 49.5 50.8 52.9
β=0.9 41.7 39.2 34.2 28.2 35.6 34.3 31.3 29.1 28.0 45.0 45.5 48.5 50.2 52.1

Table 7. Evaluation results on the GeoTime topics without explicit temporal or geo-
graphic constraints.
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between the two baselines show how important it is to include the semantics of
temporal and geographic expressions into the ranking model when dealing with
explicit temporal and geographic constraints. While the baseline with boolean
constraints already achieves very good results for top ranked documents, the
results for more documents (k ≥ 20) can further be improved by integrating
proximity information into the model. The best evaluation results are again
achieved with a medium β-weighting of 0.5.

After having demonstrated the value of our model when being faced with
explicit temporal and/or geographic expressions, we finally analyze if proximity
information also helps to improve the retrieval quality when being faced with
implicit temporal and geographic constraints only (“when” and “where”). As
Table 7 shows, our ranking model with β = 0.5 achieves the best results on this
subset and outperforms the baselines. Thus, we can summarize the evaluation
results with the following three main observations:

– Considering the semantics of temporal and geographic expressions helps to
improve satisfying information needs with explicit and/or implicit temporal
and geographic constraints.

– Taking into account term proximity information between regular terms satis-
fying a text query and expressions satisfying temporal and geographic queries
helps to further improve ranking results.

– In particular, the top-ranked documents benefit from the term proximity
information.

When analyzing the search results after the evaluation, we made the follow-
ing observation: Since all documents are from the New York Times corpus and
thus news documents, the document creation time (dct) plays an important role
throughout the whole text of the documents (cf. [17]). Thus, if the dct satisfies
qtemp, the temporal constraint could be softened for the term proximity cal-
culation since the dct is latently available in the whole news article. However,
although we evaluated our newly developed model based on a dataset with news
articles, we did not develop our model for news documents only.

6 Conclusions and Ongoing Work

In this paper, we presented a new model to rank documents for a combination
of textual, temporal, and geographic information needs. In addition to calculat-
ing single scores for each part, we developed a proximity measure to determine
the distance in the document between terms and expressions satisfying different
query parts. Thus, our model eliminates the counter-intuitive assumption of in-
dependence between the query components, which distinguishes our model from
previous works. As our evaluation demonstrates, the extraction and normaliza-
tion of temporal and geographic expressions is a prerequisite to satisfy temporal
and geographic information needs. Taking into account the proximity improves
ranking results even further.
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Currently, we are applying our model to identify temporal and geographic
highlights, i.e., to answer queries that contain temporal and geographic con-
straints but no textual parts. This allows to determine documents that are most
relevant for time-region combinations such as “Munich 1972”. This approach
could be the basis of a geo-temporal event search engine.
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